Intent Mining of Thai Phone Call Text Using a Stacking Ensemble Classifier with GPT-3 Embeddings

งานวิจัยเรื่อง Intent Mining of Thai Phone Call Text Using a Stacking Ensemble Classifier with GPT-3 Embeddings โดย ผศ. ดร.ณัฐพงษ์ แสนจันทร์   คณะเทคโนโลยีสารสนเทศและนวัตกรรม


Intent mining has recently attracted Natural Language Processing (NLP) research communities. Despite the extensive research on English and other widely spoken languages, intent mining in Thai remains unexplored. This paper proposes an extended framework for mining intentions in Thai phone call text. It utilized a stacking ensemble method with GPT-3 embeddings, constructed by systematically determining based and meta-classifiers using Q-statistic and F1 scores. Overall, the based classifiers consisting of Support Vector Classier (SVC), k-nearest Neighbors (KNN), and Random Forest (RF) were derived with a meta-classier, Logistic Regression (LR). We compared the mining results, derived through the proposed Stacking Ensemble Classier (SEC), to 1) the individual base classifiers and 2) the three BERT baselines: BERT Multilingual Uncased, and BERT-th, and BERT Based EN-TH Cased. The results revealed that SEC could outperform SVC, KNN, RF, BERT Multilingual Uncased, and BERT-th, except BERT Based EN-TH Cased. However, a statistical analysis conducted using Friedman and Holm’s post hoc tests reported no statistically significant difference between SEC and BERT Based EN-TH Cased, inferring that the two classifiers perform similarly practically.



ข้อมูลในส่วนนี้สงวนสิทธิ์ไว้เฉพาะบุคลากรมหาวิทยาลัยกรุงเทพ

กรุณากรอก Username ของท่าน โดยไม่ต้องตามด้วย @bumail.net หรือ @bu.ac.th

Sign in with your BU email without @bumail.net or @bu.ac.th